Nonsmooth Algorithms and Nesterov's Smoothing Technique for Generalized Fermat-Torricelli Problems

نویسندگان

  • Nguyen Mau Nam
  • Nguyen Thai An
  • R. Blake Rector
  • Jie Sun
چکیده

We present some algorithms for solving a number of new models of facility location which generalize the classical Fermat-Torricelli problem. Our first approach involves using the MM Principle and Nesterov’s smoothing technique to build smooth approximations that are convenient for applying smooth optimization schemes. Another approach uses subgradient-type algorithms to cope directly with the nondifferentiabilty of the cost functions. Convergence results of the algorithms are proved and numerical tests are presented to show the effectiveness of the proposed algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Log-Exponential Smoothing Technique and Nesterov's Accelerated Gradient Method for Generalized Sylvester Problems

The Sylvester smallest enclosing circle problem involves finding the smallest circle that encloses a finite number of points in the plane. We consider generalized versions of the Sylvester problem in which the points are replaced by sets. Based on the log-exponential smoothing technique and Nesterov’s accelerated gradient method, we present an effective numerical algorithm for solving these pro...

متن کامل

The Fermat-torricelli Problem in the Light of Convex Analysis

In the early 17th century, Pierre de Fermat proposed the following problem: given three points in the plane, find a point such that the sum of its Euclidean distances to the three given points is minimal. This problem was solved by Evangelista Torricelli and was named the Fermat-Torricelli problem. A more general version of the Fermat-Torricelli problem asks for a point that minimizes the sum o...

متن کامل

Proximal linearized iteratively reweighted least squares for a class of nonconvex and nonsmooth problems

For solving a wide class of nonconvex and nonsmooth problems, we propose a proximal linearized iteratively reweighted least squares (PL-IRLS) algorithm. We first approximate the original problem by smoothing methods, and second write the approximated problem into an auxiliary problem by introducing new variables. PL-IRLS is then built on solving the auxiliary problem by utilizing the proximal l...

متن کامل

Semismooth Matrix Valued Functions1

Matrix valued functions play an important role in the development of algorithms for semidefinite programming problems. This paper studies generalized differential properties of such functions related to nonsmooth-smoothing Newton methods. The first part of this paper discusses basic properties such as the generalized derivative, Rademacher’s theorem, B-derivative, directional derivative, and se...

متن کامل

A New Smoothing Conjugate Gradient Method for Solving Nonlinear Nonsmooth Complementarity Problems

In this paper, by using the smoothing Fischer-Burmeister function, we present a new smoothing conjugate gradient method for solving the nonlinear nonsmooth complementarity problems. The line search which we used guarantees the descent of the method. Under suitable conditions, the new smoothing conjugate gradient method is proved globally convergent. Finally, preliminary numerical experiments sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014