Nonsmooth Algorithms and Nesterov's Smoothing Technique for Generalized Fermat-Torricelli Problems
نویسندگان
چکیده
We present some algorithms for solving a number of new models of facility location which generalize the classical Fermat-Torricelli problem. Our first approach involves using the MM Principle and Nesterov’s smoothing technique to build smooth approximations that are convenient for applying smooth optimization schemes. Another approach uses subgradient-type algorithms to cope directly with the nondifferentiabilty of the cost functions. Convergence results of the algorithms are proved and numerical tests are presented to show the effectiveness of the proposed algorithms.
منابع مشابه
The Log-Exponential Smoothing Technique and Nesterov's Accelerated Gradient Method for Generalized Sylvester Problems
The Sylvester smallest enclosing circle problem involves finding the smallest circle that encloses a finite number of points in the plane. We consider generalized versions of the Sylvester problem in which the points are replaced by sets. Based on the log-exponential smoothing technique and Nesterov’s accelerated gradient method, we present an effective numerical algorithm for solving these pro...
متن کاملThe Fermat-torricelli Problem in the Light of Convex Analysis
In the early 17th century, Pierre de Fermat proposed the following problem: given three points in the plane, find a point such that the sum of its Euclidean distances to the three given points is minimal. This problem was solved by Evangelista Torricelli and was named the Fermat-Torricelli problem. A more general version of the Fermat-Torricelli problem asks for a point that minimizes the sum o...
متن کاملProximal linearized iteratively reweighted least squares for a class of nonconvex and nonsmooth problems
For solving a wide class of nonconvex and nonsmooth problems, we propose a proximal linearized iteratively reweighted least squares (PL-IRLS) algorithm. We first approximate the original problem by smoothing methods, and second write the approximated problem into an auxiliary problem by introducing new variables. PL-IRLS is then built on solving the auxiliary problem by utilizing the proximal l...
متن کاملSemismooth Matrix Valued Functions1
Matrix valued functions play an important role in the development of algorithms for semidefinite programming problems. This paper studies generalized differential properties of such functions related to nonsmooth-smoothing Newton methods. The first part of this paper discusses basic properties such as the generalized derivative, Rademacher’s theorem, B-derivative, directional derivative, and se...
متن کاملA New Smoothing Conjugate Gradient Method for Solving Nonlinear Nonsmooth Complementarity Problems
In this paper, by using the smoothing Fischer-Burmeister function, we present a new smoothing conjugate gradient method for solving the nonlinear nonsmooth complementarity problems. The line search which we used guarantees the descent of the method. Under suitable conditions, the new smoothing conjugate gradient method is proved globally convergent. Finally, preliminary numerical experiments sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 24 شماره
صفحات -
تاریخ انتشار 2014